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CHAPTER 1: 

 

 

  
Figure 1.1: Your eyes turn in, or converge, to fixate, or look directly at, a near object; 

they turn out, or diverge, to fixate a more distant target. The straight lines in the figure 

indicate the lines of site for each eye. (© Margaret C. Nelson.) 

 

 

 

 

 
Figure 1.2: The human eye including the pupil, lens, and retina. The central region of the 

retina is called the macula, and the center of the macula is the fovea.  The blind spot is 

located where the optic nerve leaves the retina for the rest of the brain. (© Margaret C. 

Nelson.) 

 



 
 

Figure 1.3 We can divide each retina into three regions: the fovea, or central region, the 

right side, and the left side. When you look directly at an object, its image falls on 

corresponding points on the foveal region (F) of both retinas. Other objects that cast their 

images on regions that are the same distance and in the same direction from each fovea 

also project to corresponding retinal points.  

 Imagine that you are looking directly at the toy block in figure 1.3. The teddy bear 

located to your left casts its image on corresponding points on the right side of both your 

retinas, while the rattle, to the right, casts its image on corresponding points on the left 

side of both retinas. (© Margaret C. Nelson.) 

 

 

 

 
 

Figure 1.4: Wheatstone’s illustration of his stereoscope. In this drawing of a stereoscope, 

the two A’s in the center represent mirrors oriented at 90º to each other. To use the 

stereoscope, you place your nose right at the juncture between the two mirrors. In this 

way, the right eye can see only the reflected version of a photograph placed at E in the 

figure, while the left eye can see only the reflected version of the image at E on the other 



side. Wheatstone placed into right slot E a mirror-image picture of an object as it would 

be seen by your right eye and into left slot E a mirror-image picture of the same object as 

it would be seen by your left eye. If you were to look into the stereoscope, your brain 

would fuse the two images into one, and you’d see the image in stereoscopic depth.  

(From: Wheatstone C. Contributions to the physiology of vision.—Part the first. On some 

remarkable, and hitherto unobserved, phenomena of binocular vision. Philosophical 

Transactions of the Royal Society of London 128 (1838): 371–94.) 

 

 

 

 
 

Figure 1.5: A stereo pair used by Wheatstone in his stereoscope. (From: Wheatstone C. 

Contributions to the physiology of vision.—Part the first. On some remarkable, and 

hitherto unobserved, phenomena of binocular vision. Philosophical Transactions of the 

Royal Society of London 128 (1838): 371–94.) 

 

 

 

CHAPTER 2: 

 

 

    
 

Figure 2.1: Early photos of me as an infant and toddler. In each photo, I am looking out 

of one eye while the other eye is turned in.  (Barry family photos.) 



 
 

Figure 2.2: Set-up for the preferential-looking experiment.  Infants were shown two 

different screens as depicted above. While wearing the goggles and looking at screen A, 

the infants saw vertical lines with one eye and horizontal lines with the other. When 

looking at screen B, the babies saw identical looking lines with each eye.  If an adult 

were to look at screen A with vertical lines seen by one eye and horizontal lines seen by 

the other, the adult would experience binocular rivalry.  (Adapted from Shimojo S, Bauer 

J Jr, O’Connell KM, Held R. Pre-stereoptic binocular vision in infants. Vision Research 

26 (1986): 501–10.) 

 

 

 



 
 

Figure 2.3: The left eye is aimed at, or fixating, the rattle while the right eye is turned 

inward and fixating the toy block. This situation can lead to double vision (the rattle is 

seen twice) and to visual confusion (the rattle and block appear to be located at the same 

point in space). (© Margaret C. Nelson.) 

 

 

 

 
 

Figure 2.4: The six muscles that move the eyes.  Dr. Fasanella operated on the medial and 

lateral rectus muscles of both eyes and the inferior rectus muscle of my right eye. (© 

Margaret C. Nelson.) 

 

 

 

 



CHAPTER 4: 

 

 
Figure 4.1: The tunicate as a sessile adult (left) and swimming larva (right). Tunicates, 

have eyes when they are young larvae in order to swim about and find a good place to 

settle down. Once they settle down and transform from active swimmers into stationary 

filter feeders, their eyes and brain degenerate.  They have little need for a good visual 

system and brain if they are not moving. (© Margaret C. Nelson.) 

 

 

 

 
 

Figure 4.2 When looking straight ahead, your sensed visual direction is not the direction 

in which either eye is pointing but one that seems to emanate from the center of your 

forehead. (© Margaret C. Nelson.) 



 

 

 
 

Figure 4.3: The “hole-in-the-hand” experiment.  Parts A and C demonstrate the setup for 

the experiment, while part B shows what a viewer with normal vision will see. (© 

Margaret C. Nelson.) 

 

 

 

 
 

Figure 4.4 A patient behind the phoropter.  (© Rosalie Winard.) 

 

 

 

 

 

 

 

 

 

 



CHAPTER 5: 

 

 
 

Figure 5.1: Heather Fitzpatrick playing the “wall game” with the Wayne Saccadic 

Fixator. (© Rosalie Winard.) 

 

 

 

 
 

 

Figure 5.2: Loose prisms.  I used these with the red/green panel exercise to learn to aim 

my two eyes at the same spatial location, thus reducing suppression. (Photo by James 

Gehrt.) 

 

 

 

 

 



 
 

Figure 6.1:  Me using the Brock string, a household piece of spring along which wooden 

beads are threaded. (© Rosalie Winard.) 

 

 

 

 
 

 Figure 6.2:  When a person with normal vision uses the Brock string as shown in Figure 

6.1, the bead appears in the center of an X formed by four images of the string. (© Julia 

Wagner.) 

 

 

 



 
 

 

Figure 6.3: Panum’s fusional area. Each dotted line represents the line of sight for each 

eye. 

 

 

 

 

 

Figure 6.4: When I learned to aim both eyes at the same place at the same time, visual 

neurons in my brain received correlated input from both eyes.  By a process called long-

term potentiation, the connections between both eyes onto visual neurons may have been 

strengthened, converting weakly binocular neurons into strongly binocular ones.  In this 

figure, the postsynaptic cell is the binocular neuron. The thickness of the arrows indicates 

the strength of the connections. (© Margaret C. Nelson.) 

 

 

 

 



 

CHAPTER 7: 

 

Figure 7.1: See http://www.metmuseum.org/Collections/search-the-

collections/150000154 for the painting of  Princess Albert de Broglie, née Joséphine-

Eléonore-Marie-Pauline de Galard de Brassac de Béarn by Jean Auguste Dominique 

Ingres.  When I used to look at this painting before my vision therapy, I thought that the 

pleats and grooves in the princess’ clothes were painted in an exaggerated manner. No 

one, I believed, really saw the texture of the gown in that kind of depth and detail. 

 

 

 

 
 

Figure 7.2:  This drawing of a circle could represent a three dimensional ball or a flat 

disk. 

 

 

 

 
 

Figure 7.3:  Shading evokes a sense of three dimensionality. (© Julia Wagner.) 

 

 

 

 
 
Figure 7.4:  Adding a shadow further increases the sense of three dimensionality. (© Julia 

Wagner.) 

http://www.metmuseum.org/Collections/search-the-collections/150000154
http://www.metmuseum.org/Collections/search-the-collections/150000154


 

 
 

Figure 7.5: Which wheel is blocking which?  The use of the depth cue,object occlusion, 

makes this drawing ambiguous. (© Margaret C. Nelson.) 

 

 

 

 
 

Figure 7.6:  In this painting by my father, the distant buildings are drawn to appear 

hazier, creating the sense that they are further away.  This distance cue is called 

atmospheric perspective. (© Malcolm Feinstein.) 

 

 

 



 
 

Figure 7.7:  My father used linear perspective in this painting to suggest that the road 

extends into the distance. (© Malcolm Feinstein.) 

 

 

 

 
 

Figure 7.8: The quoits polarized vectogram, a vision therapy tool used to promote 

binocular fusion. The photo shows two overlapping sheets.  Each sheet contains an image 

of a rope circle (also known as a quoit). When the viewer wears polarized glasses, each 

eye sees the image on only one of the sheets. To see just one image of the rope circle 

floating in depth, he or she must fuse the right- and left-eye views. (Photo by James 

Gehrt.) 

 

 

 

 



 

 

 
 

 Figure 7.9:  The SILO effect.  As the fused image of the rope circle appears to recede in 

space, it looks larger. As it appears to float forward, it looks smaller.(© Julia Wagner.) 

 

 

 

 
 

Figure 7.10:  This “corridor illusion” also makes use of the phenomenon of size 

constancy. The two poles in figure 7.10 are actually the same height. However, we judge 

the pole on the right to be further away due to the decreasing size and converging lines of 

the floor, wall, and ceiling tiles. Since we interpret the right pole as further away, we see 

it as taller.  (Deregowski J in Gregory RL, Gombrich EH (ed). 1973.  Art and Illusion, 

London: Duckworth.) 

 



 
 

Figure 7.11: A nonrandom dot stereogram. If you are able to cross your eyes and “free-

fuse” these two images, the inner circle will appear to pop out. If you fuse the images by 

looking “though” the page, the inner circle will appear to recede behind the paper. 

 

 

 

 
 

Figure 7.12: A random dot stereogram.  If you cross your eyes to free-fuse the stereo pair, 

a central square will appear, as if by magic, to float in front of the background.  (Free 

fusing a random dot stereogram is difficult to do even for people with normal vision.) 

(Stereogram by Benjamin Backus.) 

 

 

 

 

 

 

 

 

 

 

 



CHAPTER 8: 

 

 
 

Figure 8.1:  An example of a recording from a nerve cell taken from Hubel and Wiesel’s 

first paper on the cat visual cortex. The lower bar indicates when the nerve cell was 

stimulated with a light pattern. During this time, the neuron fired impulses.(Hubel DH, 

Wiesel TN. 1959. Receptive fields of single neurons in the cat's striate cortex.  Journal of 

Physiology 148: 574-91, Blackwell Publishing.) 


